

Q.P. Code: 21376

5

(3 Hours) [Total Marks: 80]

- N.B.: (1) Question No.1 is Compulsory.
 - (2) Attempt any three Questions out of remaining five questions.
 - (3) Figures to the right indicate full marks.
 - (4) Assume any suitable data if necessary and justify the same.
- Q1 Solve any FOUR
 - A) Explain briefly the boundary layer formation and define boundary layer thickness.
 - B) With neat sketch explain working and construction of a Pitot tube 5
 - C) The following represent the velocity components. Calculate the unknown velocity 5 component so that they satisfy the continuity equation.

$$u = 2x^2$$
; $v = 2xyz$

- D) The absolute viscosity of a liquid having a specific gravity of 0.87 is 0.073 Poise. 5 Find its kinematics viscosity in m²/s and in stokes.
- E) Explain Stability of floating bodies.
- Q2 A) Derive the differential form of the general mass conservation equation in Cartesian coordinate for a fluid.
 - B) A semicircular 12 m diameter tunnel is to be built under a 45 m deep, 240 m long lake. Determine the magnitude and direction of total hydrostatic force acting on the roof of the tunnel.

Page 1 of 2

10

- Q3 A) A 90° vertical reducing bend has a diameter 300 mm at inlet and 150 mm at exit carries 0.6 m³/s oil of specific gravity 0.85 with a pressure of 120 KN/m² at inlet to the bend. The volume of bend is 0.15 m³. Find the magnitude and direction of the force on the bend. Neglect the frictional losses and assume both inlet and outlet sections to be at same horizontal level.
 - B) Consider a two dimensional viscous incompressible flow of a Newtonian fluid between two parallel plates, separated by a distance 'b'. One of the plates is stationary and the other is moving with a uniform velocity U. There is no pressure gradient in the flow. Obtain the general equation from the general Navier-Stokes equation.
- Q4 A) Using the laminar boundary layer velocity distribution:

$$\frac{u}{U_{\infty}} = 2\left(\frac{y}{\delta}\right) - 2\left(\frac{y}{\delta}\right)^2 + \left(\frac{y}{\delta}\right)^4$$

- i) Check if boundary layer separation occurs.
- ii) Determine Boundary layer thickness (In terms of Re)
- B) Derive Euler's equation of motion in Cartesian co-ordinate.
- Q5 A) Air has a velocity of 1000 km/hr at a pressure of 9.81 KN/m² vacuum and a 10 temperature of 47°C. Compute its stagnation properties (Pressure, Temperature and Density). Take atm. pressure 98.1 KN/m², R =287 J/Kg°K and Y = 1.4
 - B) A flow has a velocity potential function as $\emptyset = x^3 3xy^2$. Verify whether it 10 represents a valid flow field. If it does then determine the stream function.
- Q6 A) Two reservoirs are connected by three pipes in series.

Pipe	Length	Diameter	f
1	500 m	30 cm	0.02
2	200 m	10 cm	0.025
3	100 m	10 cm	0.03

Calculate the discharge through them if the elevation difference of the levels is in the reservoirs is 10 m considering minor losses.

B) Write short notes (any TWO)

I. Moody's Diagram

II. Lift force on circulating cylinder in uniform flow.

III. Compressible flow through the Convergent Divergent Nozzle

Page 2 of 2